History Blog
|
|
Solid or hollow? Again a compromise, between lightness and stiffness on one hand and ease of construction, added strength and resilience on the other. Granted that the solid spar weighs a bit more, it is far easier to build if you are going to make your own, and it is far stronger in case your boat is a bow-steerer, and capsizes some windy day. A mast that will stay up there and prop up the boat after the spill may not only save boat, sail and rigging, but may also save you. As in all questions of weight, the ice boat does not pay anything like the penalty for added weight that the sail boat or the airplane does. The sail boat sinks deeper into the water for every pound added; hence a penalty in added resistance. The airplane must use a higher lift airfoil to carry added weight; hence a penalty in speed and fuel consumption. The ice boat, on the contrary, unless sailing in deep slush, adds practically nothing to resistance or to required draft of sail by the addition of a few pounds of weight. Where the gain is on the side of safety, there should be no question, particularly now that heavier-than-average boats have proved themselves faster in competition.. Sitka spruce is, by all odds, the best material for spars (masts). Glue should be the best waterproof casein (aircraft type) or phenolic resin. Be sure to mix these glues in accordance with the manufacturer’s instructions, regardless of “expert” advice by local carpenters, unless you want the pleasure of watching — and, perhaps, feeling — your handiwork disintegrate before your eyes. And use plenty of clamps! This means plenty — so many that it seems ridiculous.
First, when the boat started out, moving slowly, her full-cut sail, with plenty of draft, was just what she wanted — the high-lift, low-speed wing, if you will. Soon she was up to real speed. Another interesting result of this method of staying the spar is that the lower portion, below the stays, was bent to leeward but the upper portion was deflected to windward because of the stiffness of the mast and the small sail area up there. The two bends had transformed a straight stick into a beautifully curved and amazingly efficient wing edge. Stay attachment to a rotating mast presents another problem - that of proper attachment to allow, or even encourage, the pivoting action. The best method is ridiculously simple. Attach the headstay to a single tang or to the bar of a small but strong boom-type plate fitting. Attach both shrouds to a single bolt passing through the mast, from side to side, and cross these wires over one another so that the port shroud leads up, across the front of the mast and around to the starboard end of the bolt, and vice versa. The pull on the weather shroud rotates the mast exactly as we want it to rotate. Wear and fatigue in the stiff rigging wire can be avoided by fitting the upper ends of the shrouds with short pennants of flexible wire. Sheathing the mast with thin copper or brass, and grooving it for the under shroud, are refinements which will help further to reduce chafing. The great advantage, aside from the help to rotation, is the absence of any special fitting, and the clean, uninterrupted wind flow around the spar. A saving in expense and a gain in power and efficiency at the same time should be convincing arguments. A word about the rotating mast step before we go on to the boom. The simplest and best is the ball and socket type, usually a metal socket set into the heel of the mast, riding on a metal ball mounted on deck. One word of caution about this type of fitting: The socket should be a good inch or more in depth, to prevent possible unstepping of the mast while coming about on rough ice. Adjustable mast steps of this type have the ball casting arranged to slide fore and aft in a piece of dural channel mounted on deck. Several holes in the sides of the channel permit corresponding positions of the ball casting, which is held in place by pins through the holes. A satisfactory home-made version is a trailer hitch ball, mounted either on deck or in the heel of the mast, working in a metal-lined socket. No lubricant seems necessary in these fittings. The boom (horizontal portion of a boat’s rig) is far simpler than the mast, both in function and design. Early plank booms were rigged with bulky wooden jaws, which were a loose fit on the mast so that some rotation was possible. A neater solution is to use a regular roller reefing gooseneck. This is a neat bronze jaw which hugs the mast and carries a rotating boom jaw on its after side. It is satisfactory in operation and accident-proof. The gooseneck fittings designed for Class E boats, consisting of a track on the mast carrying a universal-joint boom fitting, seem satisfactory for Class E and Class D rigs but are not recommended for anything larger. Now that we have our spars and standing rigging, the rest of our power plant is the sail, with its accessories, the battens, and the control elements, sheets and sheet blocks. Heretofore, sails have been cut ‘full,’ so that the wind would blow them out into the desired curve. Naturally, such sails hang limp and useless until the breeze strikes them. By contrast, the modern ice boat sail, rigidly set to the desired curve, wind or no wind, is a great deal more efficient. No time is lost when the breeze strikes; power is instantly generated without the wait for the sail to fill. The canvas should be much heavier than that used on a sail boat. The pressure of the battens (long, flat strips of squared wood or metal used to hold fabric in place) will soon ruin the shape of a sail made of light material, and the use of the battens makes light cloth unnecessary. The speed of ice boats and the vicious drive of the winter wind all call for good stout cloth. When the breeze is lighter, the sheet (line attached to the lower sail) may be belayed (secured), and the skipper can loll in the cockpit and enjoy a fine afternoon’s sail — if he is that kind of a skipper. I have never seen one in an ice boat. No matter how light the air, the typical ice-boater is doing his best to get every bit of speed possible, whether racing or just sailing around. For this, playing the sheet constantly is essential. There is no “feel" of the boat through the rudder, such as that which the sail boat skipper uses to such good advantage. The steering runner has no grip in the ice equivalent to the grip of the sail boat’s rudder, and cannot possibly transmit any messages to the helmsman as to whether he is carrying a weather or lee helm. But “feel’’ via the sheet is another matter. The power and pull of the sail is directly transmitted to the skipper’s hand through the sheet and, through this instantaneous telegraph, he can tell when a shift of course has increased or decreased the power of his rig long before an appreciable change in boat speed is evident, and without any apparent difference in the set of the sail. The power of a violent puff, apt to cause a high hike or even a capsize, can be felt instantly and in ample time to ease the sheet a trifle. In fact, the whole business of getting the most out of your boat depends on a keen coordination of hand and eye to keep giving her the maximum possible drive without getting into trouble—and this makes constant sheet-trimming mandatory. This completes discussion of the rig, or power plant. The principles outlined apply equally to bow-steerers and to stern-steerers. If you enjoyed this post and would like to support more history blog content, please make a donation to the Hudson River Maritime Museum or become a member today!
1 Comment
Paul Kenny
12/15/2023 01:04:21 pm
Have you ever done a story about the crew races along the Hudson. When I read the book “Boys in the Boat”, that part of the book really intrigued me?
Reply
Your comment will be posted after it is approved.
Leave a Reply. |
AuthorThis blog is written by Hudson River Maritime Museum staff, volunteers and guest contributors. Archives
September 2024
Categories
All
|
GET IN TOUCH
Hudson River Maritime Museum
50 Rondout Landing Kingston, NY 12401 845-338-0071 [email protected] Contact Us |
GET INVOLVED |
stay connected |